EE 330 Lecture 17

MOSFET Modeling

Fall 2023 Exam Schedule

Exam 1 Friday Sept 22
Exam 2 Friday Oct 20
Exam 3 Friday Nov. 17
Final Monday Dec 11 12:00-2:00 p.m.

Prelab Announcement

There will be a pre-lab posted on the class WEB site for Lab 7

Limitations of Existing MOSFET Models

What is Y when $A=B=V_{D D}$

What is power dissipation if A is stuck at an intermediate voltage?

Review from last lecture

n-Channel MOSFET Operation and Model

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{D}}=0 \\
& \mathrm{I}_{\mathrm{G}}=0 \\
& \mathrm{I}_{\mathrm{B}}=0
\end{aligned}
$$

Model in Cutoff Region

n-Channel MOSFET Operation and Model

Critical value of V_{GS} that creates inversion layer termed threshold voltage, V_{TH})

Increase V_{GS} more
Inversion layer forms in channel

$$
\mathrm{I}_{\mathrm{D}} \mathrm{R}_{\mathrm{CH}}=\mathrm{V}_{\mathrm{DS}}
$$

Inversion layer will support current flow from D to S
$\mathrm{I}_{\mathrm{G}}=0$
Channel behaves as thin-film resistor
$\mathrm{I}_{\mathrm{B}}=0$

n-Channel MOSFET Operation and Model

Increase $V_{D S}$ and $V_{G S}>V_{T H}$ Inversion layer thins near drain
$\mathrm{V}_{\mathrm{GC}}(\mathrm{x})$ changes with x for larger V_{DS}
I_{D} no longer linearly dependent upon $V_{D S}$ Still termed "ohmic" or "triode" region of operation

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{D}}=? \\
& \mathrm{I}_{\mathrm{G}}=0 \\
& \mathrm{I}_{\mathrm{B}}=0
\end{aligned}
$$

Triode Region of Operation

For V_{DS} larger
$R_{C H}=\frac{L}{W} \frac{1}{\left(V_{G S}-V_{T H}\right) \mu C_{O X}}$

$$
\begin{aligned}
& I_{D}=\mu C_{O x} \frac{W}{L}\left(V_{G S}-V_{T H}-\frac{V_{D S}}{2}\right) V_{D S} \\
& I_{G}=I_{B}=0
\end{aligned}
$$

Model in Triode Region

Review from last lecture

n-Channel MOSFET Operation and Model

Increase V_{DS} even more (beyond $\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TH}}$)
Nothing much changes !!
Termed "saturation"region of operation

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{D}}=? \\
& \mathrm{I}_{\mathrm{G}}=0 \\
& \mathrm{I}_{\mathrm{B}}=0
\end{aligned}
$$

Saturation Region of

For V_{DS} in Saturation

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{D}}=\frac{\mu \mathrm{C}_{\mathrm{OX}} \mathrm{~W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TH}}\right)^{2} \\
& \mathrm{I}_{\mathrm{G}}=\mathrm{I}_{\mathrm{B}}=0
\end{aligned}
$$

Model in Saturation Region

Model Summary

 n-channel MOSFETNotation: Don't confuse $\mathrm{V}_{T H}$ with $\mathrm{V}_{\mathrm{t}}=\mathrm{kT} / \mathrm{q}$

$$
\mathrm{I}_{\mathrm{D}}=\left\{\begin{array}{llll}
0 & & \mathrm{~V}_{\mathrm{GS}} \leq \mathrm{V}_{\mathrm{TH}} & \text { Cutoff } \\
\mu \mathrm{C}_{\mathrm{Ox}} \frac{\mathrm{~W}}{\mathrm{~L}}\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TH}}-\frac{\mathrm{V}_{\mathrm{DS}}}{2}\right) \mathrm{V}_{\mathrm{DS}} & \mathrm{~V}_{\mathrm{GS}} \geq \mathrm{V}_{T} & \mathrm{~V}_{\mathrm{DS}}<\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TH}} & \text { Triode } \\
\mu \mathrm{C}_{\mathrm{Ox}} \frac{\mathrm{~W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TH}}\right)^{2} & \mathrm{~V}_{\mathrm{GS}} \geq \mathrm{V}_{\mathrm{T}} & \mathrm{~V}_{\mathrm{DS}} \geq \mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TH}} \text { Saturation }
\end{array}\right.
$$

$$
\mathrm{I}_{\mathrm{G}}=\mathrm{I}_{\mathrm{B}}=0
$$

Model Parameters: $\left\{\mu, \mathrm{V}_{\mathrm{TH}}, \mathrm{C}_{\mathrm{OX}}\right\}$ Design Parameters : $\{\mathrm{W}, \mathrm{L}\}$
This is a piecewise model (not piecewise linear though)
Piecewise model is continuous at transition between regions
(Deep triode special case of triode where $V_{D S}$ is small $R_{C H}=\frac{L}{W} \frac{1}{\left(V_{G S}-V_{T H}\right) \mu C_{O X}}$)
Note: This is the third model we have introduced for the MOSFET

$$
\begin{aligned}
& \text { n-channel MOSFET } \\
& 0 \\
& 0 \quad \mathrm{~V}_{\mathrm{GS}} \leq \mathrm{V}_{\mathrm{TH}} \\
& \mu C_{\mathrm{O}} \frac{\mathrm{~W}}{\mathrm{~L}}\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TH}}-\frac{\mathrm{V}_{\mathrm{DS}}}{2}\right) \mathrm{V}_{\mathrm{DS}} \quad \mathrm{~V}_{\mathrm{GS}} \geq \mathrm{V}_{\mathrm{TH}} \quad \mathrm{~V}_{\mathrm{DS}}<\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TH}} \\
& \mu \mathrm{C}_{\mathrm{OX}} \frac{\mathrm{~W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TH}}\right)^{2} \\
& V_{G S} \geq V_{T H} \quad V_{D S} \geq V_{G S}-V_{T H} \\
& I_{G}=I_{B}=0
\end{aligned}
$$

Observations about this model (developed for $\mathrm{V}_{\mathrm{BS}}=0$):

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{D}}=\mathrm{f}_{1}\left(\mathrm{~V}_{\mathrm{GS}}, \mathrm{~V}_{\mathrm{DS}}\right) \\
& \mathrm{I}_{\mathrm{G}}=\mathrm{f}_{2}\left(\mathrm{~V}_{\mathrm{GS}}, \mathrm{~V}_{\mathrm{DS}}\right) \\
& \mathrm{I}_{\mathrm{B}}=\mathrm{f}_{3}\left(\mathrm{~V}_{\mathrm{GS}}, \mathrm{~V}_{\mathrm{DS}}\right)
\end{aligned}
$$

This is a nonlinear piecewise model characterized by the functions f_{1}, f_{2}, and f_{3} where we have assumed that the port voltages V_{GS} and V_{DS} are the independent variables and the drain currents are the dependent variables

Generaif Nomplinear Models

$$
\begin{aligned}
& \begin{array}{l}
I_{1}=f_{1}\left(V_{1}, V_{2}\right) \\
I_{2}=f_{2}\left(V_{1}, V_{2}\right)
\end{array}
\end{aligned}
$$

I_{1} and I_{2} are 3-dimensional relationships which are often difficult to visualize

Two-dimensional representation of 3-dimensional relationships

Graphical Representation of MOS Model

Parabola separated triode and saturation regions and corresponds to $\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TH}}$

PMOS and NMOS Models

- Functional form identical, sign changes and parameter values different
- Will give details about p-channel model later

Example: Determine the output voltage for the following circuit using the square-law model of the MOSFET. Assume $\mathrm{V}_{\mathrm{TH}}=1 \mathrm{~V}$ and $\mu C_{o x}=100 \mu \mathrm{AV}^{-2}$

Solution:
Since $\mathrm{V}_{\mathrm{GS}}>\mathrm{V}_{\mathrm{TH}}, \mathrm{M}_{1}$ is operating in either saturation or triode region Strategy will be to guess region of operation, solve, and then verify region

Example: Determine the output voltage for the following circuit using the square-law model of the MOSFET. Assume $\mathrm{V}_{\mathrm{TH}}=1 \mathrm{~V}$ and $\mu C_{o x}=100 \mu \mathrm{AV}^{-2}$

Solution:
Guess M_{1} in saturation

$$
5 \mathrm{~V}=\mathrm{I}_{\mathrm{D}} 10 \mathrm{~K}+\mathrm{V}_{\text {OUT }}
$$

$$
\text { Required verification: } \mathrm{V}_{\mathrm{DS}}>\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TH}}
$$

Can eliminate I_{D} between these 2 equations to obtain $V_{\text {OUT }}$

Example: Determine the output voltage for the following circuit using the square-law model of the MOSFET. Assume $\mathrm{V}_{\mathrm{TH}}=1 \mathrm{~V}$ and $\mu C_{o x}=100 \mu \mathrm{AV}^{-2}$

Example: Determine the output voltage for the following circuit using the square-law model of the MOSFET. Assume $\mathrm{V}_{T H}=1 \mathrm{~V}$ and $\mu C_{o x}=100 \mu \mathrm{AV}^{-2}$

$$
V_{\text {OUT }}=0.515 \mathrm{~V}
$$

Limitations of Existing Models

Logic Gate

Simple square-law Model

Voltage Amplifier

Model Extensions

Projections intersect $-\mathrm{V}_{\text {DS }}$ axis at same point, termed Early Voltage
Typical values from -20 V to -200 V
Usually use parameter λ instead of V_{A} in MOS model

Model Extencinnc

Model Extensions

$$
I_{D}=\left\{\begin{array}{lcc}
0 & V_{G S} \leq V_{T H} & \\
\mu C_{O x} \frac{W}{L}\left(V_{G S}-V_{T H}-\frac{V_{D S}}{2}\right) V_{D S} & V_{G S} \geq V_{T H} & V_{D S}<V_{G S}-V_{T H} \\
\mu C_{O x} \frac{W}{2 L}\left(V_{G S}-V_{T H}\right)^{2} \bullet\left(1+\lambda V_{D S}\right) & V_{G S} \geq V_{T H} & V_{D S} \geq V_{G S}-V_{T H}
\end{array}\right.
$$

Note: This introduces small discontinuity in model at SAT/Triode transition

Further Model Extensions

Existing model does not depend upon the bulk voltage !

Observe that changing the bulk voltage will change the electric field in the channel region!

Further Model Extensions

Existing model does not depend upon the bulk voltage !

Observe that changing the bulk voltage will change the electric field in the channel region!

Changing the bulk voltage will change the thickness of the inversion layer
Changing the bulk voltage will change the threshold voltage of the device

$$
\mathrm{V}_{\mathrm{TH}}=\mathrm{V}_{\mathrm{THO}}+\gamma\left(\sqrt{\phi-\mathrm{V}_{\mathrm{BS}}}-\sqrt{\phi}\right)
$$

ϕ is the surface potential (some authors use symbol Φ_{S})
Y is the bulk threshold

Typical Bulk Effects on Threshold Voltage for n-channel Devices

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{TH}}=\mathrm{V}_{\mathrm{THO}}+\mathrm{Y}\left(\sqrt{\phi-\mathrm{V}_{\mathrm{BS}}}-\sqrt{\phi}\right) \\
& \gamma \cong 0.4 \mathrm{~V}^{1 / 2} \quad \phi \cong 0.6 \mathrm{~V}
\end{aligned}
$$

- Bulk-Diffusion Generally Reverse Biased (visso or at least $v_{\text {BS }}<0.3 v$) for n-channel
- Shift in threshold voltage with bulk voltage can be substantial
- Often $\mathrm{V}_{\mathrm{BS}}=0$

Typical Bulk Effects on Threshold Voltage for n-channel Devices

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{TH}}=\mathrm{V}_{\mathrm{TH} 0}+\mathrm{Y}\left(\sqrt{\phi-\mathrm{V}_{\mathrm{BS}}}-\sqrt{\phi}\right) \\
& \gamma \cong 0.4 \mathrm{~V}^{1 / 2} \quad \phi \cong 0.6 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta \mathrm{V}=\mathrm{V}_{\mathrm{TH}}-\mathrm{V}_{\mathrm{TH} 0}=\mathrm{Y}\left(\sqrt{\phi-\mathrm{V}_{\mathrm{BS}}}-\sqrt{\phi}\right) \\
& \Delta \mathrm{V} \cong 0.4(\sqrt{0.6 \mathrm{~V}--5 \mathrm{~V}}-\sqrt{0.6}) \cong 0.64 \mathrm{~V}
\end{aligned}
$$

Typical Bulk Effects on Threshold Voltage for p-channel Devices

$$
\begin{gathered}
\mathrm{V}_{\mathrm{TH}}=\mathrm{V}_{\mathrm{TH} 0}-\mathrm{V}\left(\sqrt{\phi+\mathrm{V}_{\mathrm{BS}}}-\sqrt{\phi}\right) \\
\gamma \cong 0.4 V^{1 / 2} \quad \phi \cong 0.6 \mathrm{~V}
\end{gathered}
$$

V_{TH}

- Bulk-Diffusion Generally Reverse Biased ($\mathrm{v}_{\mathrm{ES}}>0$ or at least $\mathrm{V}_{\mathrm{BS}}>0.0 .3 \mathrm{v}$) for p -channel
- Same functional form as for n-channel but $\mathrm{V}_{\text {TН }}<0$
- Magnitude of threshold voltage increases with magnitude of reverse bias

Model Extension Summary

$$
\begin{aligned}
& I_{G}=0 \\
& I_{B}=0
\end{aligned}
$$

$$
I_{o}=\left\{\begin{array}{l}
0 \\
\mu C_{o x} \frac{W}{L}\left(V_{o s}-V_{T H}-\frac{V_{O S}}{2}\right) V_{D S} \\
\mu C_{o x} \frac{W}{2 L}\left(V_{G S}-V_{T H}\right)^{2} \bullet\left(1+\lambda V_{o s}\right)
\end{array}\right.
$$

$$
V_{\mathrm{GS}} \leq \mathrm{V}_{\mathrm{TH}}
$$

$$
\mathrm{V}_{\mathrm{GS}} \geq \mathrm{V}_{T H} \quad \mathrm{~V}_{\mathrm{DS}}<\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{T H}
$$

$$
V_{\mathrm{GS}} \geq \mathrm{V}_{\mathrm{TH}} \quad V_{\mathrm{os}} \geq \mathrm{V}_{\mathrm{GS}}-V_{\mathrm{TH}}
$$

$$
\mathrm{V}_{\mathrm{TH}}=\mathrm{V}_{\mathrm{THO}}+\gamma\left(\sqrt{\varphi-\mathrm{V}_{\mathrm{BS}}}-\sqrt{\varphi}\right)
$$

Model Parameters : $\left\{\mu, \mathrm{C}_{\mathrm{OX}}, \mathrm{V}_{\text {TH0 }}, \varphi, \gamma, \lambda\right\}$
Design Parameters : $\{\mathrm{W}, \mathrm{L}\}$ but only one degree of freedom W/L

Operation Regions by Applications

Most analog circuits operate in the saturation region
(basic VVR operates in triode and is an exception)

Most digital circuits operate in triode and cutoff regions and switch between these two with Boolean inputs

Model Extension (short devices)

$$
\mathrm{I}_{\mathrm{D}}= \begin{cases}0 & \mathrm{~V}_{\mathrm{GS}} \leq \mathrm{V}_{T H} \\ \mu \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{~W}}{\mathrm{~L}}\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{T H}-\frac{\mathrm{V}_{\mathrm{DS}}}{2}\right) \mathrm{V}_{\mathrm{DS}} & \mathrm{~V}_{\mathrm{GS}} \geq \mathrm{V}_{T H} \\ \mu \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{~W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TH}}\right)^{2} & \mathrm{~V}_{\mathrm{GS}} \geq \mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{T H} \\ \mathrm{~V}_{\mathrm{DS}} \geq \mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{T H}\end{cases}
$$

As the channel length becomes very short, velocity saturation will occur in the channel and this will occur with electric fields around $2 \mathrm{~V} / \mathrm{u}$. So, if a gate length is around 1 u , then voltages up to 2 V can be applied without velocity saturation. But, if gate length decreases and voltages are kept high, velocity saturation will occur

$$
\mathrm{I}_{\mathrm{o}}= \begin{cases}0 & \mathrm{~V}_{\mathrm{GS}} \leq \mathrm{V}_{T H} \\ \frac{\theta_{2}}{\theta_{1}} \mu \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{~W}}{\mathrm{~L}}\left(\mathrm{~V}_{\mathrm{os}}-\mathrm{V}_{T H}\right)^{\frac{\alpha}{2}} \mathrm{~V}_{\mathrm{oS}} & \mathrm{~V}_{\mathrm{os}} \geq \mathrm{V}_{T H} \mathrm{~V}_{\mathrm{oS}}<\theta_{1}\left(\mathrm{~V}_{\mathrm{GS}}-V_{T H}\right)^{\frac{\alpha}{2}} \\ \theta_{2} \mu \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{~W}}{\mathrm{~L}}\left(\mathrm{~V}_{\mathrm{os}}-\mathrm{V}_{T H}\right)^{\alpha} & \mathrm{V}_{\mathrm{GS}} \geq \mathrm{V}_{T H} \mathrm{~V}_{\mathrm{oS}} \geq \theta_{1}\left(\mathrm{~V}_{\mathrm{GS}}-V_{T H}\right)^{\frac{\alpha}{2}}\end{cases}
$$

α is the velocity saturation index, $2 \geq \alpha \geq 1$

Model Extension (short devices)
 (n-channel device)

$$
\mathrm{I}_{0}=\left\{\begin{array}{lll}
0 & \mathrm{~V}_{\mathrm{os}} \leq \mathrm{V}_{T H} & \\
\frac{\theta_{2}}{\theta_{1}} \mu \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{~W}}{\mathrm{~L}}\left(\mathrm{~V}_{\mathrm{os}}-\mathrm{V}_{\mathrm{TH}}\right)^{\frac{\alpha}{2}} \mathrm{~V}_{\mathrm{os}} & \mathrm{~V}_{\mathrm{os}} \geq \mathrm{V}_{T H} & \mathrm{~V}_{\mathrm{os}}<\theta_{1}\left(\mathrm{~V}_{\mathrm{os}}-V_{T H}\right)^{\frac{\alpha}{2}} \\
\theta_{2} \mu \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{~W}}{\mathrm{~L}}\left(\mathrm{~V}_{\mathrm{os}}-\mathrm{V}_{\mathrm{TH}}\right)^{\alpha} & \mathrm{V}_{\mathrm{os}} \geq \mathrm{V}_{\mathrm{TH}} & \mathrm{~V}_{\mathrm{os}} \geq \theta_{(}\left(\mathrm{V}_{\mathrm{os}}-V_{T H}\right)^{\frac{\alpha}{2}}
\end{array}\right.
$$

α is the velocity saturation index, $2 \geq \alpha \geq 1$
No longer a square-law model (some term it an α-power or α-law model)
For long devices, $\alpha=2$
Channel length modulation (λ) and bulk effects can be added to the velocity Saturation as well

Degrading of α is not an attractive limitation of the MOSFET
Be aware of existence but of little use!
(too complicated for analytical calculations, not accurate enough for simulations)

Model Extension (BSIM model)

$\begin{aligned} & \text {.MODEL CM } \\ & \text { +VERSION } \end{aligned}$	MOSN NMOS ($=3.1$
+XJ	$=1.5 \mathrm{E}-7$
+K1	$=0.8976376$
+K3B	$=-8.2369696$
+DVTOW	$=0$
+DVT0	$=2.7123969$
+U0	$=451.2322004$
+UC	$=1.22401 \mathrm{E}-11$
+AGS	$=0.130484$
+KETA	$=-3.043349 \mathrm{E}-3$
+RDSW	$=1.367055 \mathrm{E} 3$
+WR	$=1$
+XL	$=1 \mathrm{E}-7$
+DWB	$=3.676235 \mathrm{E}-8$
+CIT	$=0$
+CDSCB	$=0$
+DSUB	$=0.0764123$
+PDIBLC2	$=2.366707 \mathrm{E}-3$
+PSCBE1	$=6.611774 \mathrm{E} 8$
+PRT	$=0$
+KT1L	$=0$
+UB1	$=-7.61 \mathrm{E}-18$
+WL	$=0$
+WWN	$=1$
+LLN	$=1$
+LWL	$=0$
+CGDO	$=2.32 \mathrm{E}-10$
+CJ	$=4.282017 \mathrm{E}-4$
+CJSW	$=3.034055 \mathrm{E}-10$
+CJSWG	$=1.64 \mathrm{E}-10$
+CF	$=0$
+PK2	$=-0.0289036$
*	

TNOM	$=27$
NCH	$=1.7 \mathrm{E} 17$
K2	$=-0.09255$
WO	$=1.041146 \mathrm{E}-8$
DVT1W	$=0$
DVT1	$=0.4232931$
UA	$=3.091785 \mathrm{E}-13$
VSAT	$=1.715884 \mathrm{E} 5$
BO	$=2.446405 \mathrm{E}-6$
A1	$=8.18159 \mathrm{E}-7$
PRWG	$=0.0328586$
WINT	$=2.443677 \mathrm{E}-7$
XW	$=0$
VOFF	$=-1.493503 \mathrm{E}-4$
CDSC	$=2.4 \mathrm{E}-4$
ETAO	$=2.342963 \mathrm{E}-3$
PCLM	$=2.5941582$
PDIBLCB	$=-0.0431505$
PSCBE2	$=3.238266 \mathrm{E}-4$
UTE	$=-1.5$
KT2	$=0.022$
UC1	$=-5.6 \mathrm{E}-11$
WLN	$=1$
WWL	$=0$
LW	$=0$
CAPMOD	$=2$
CGSO	$=2.32 \mathrm{E}-10$
PB	$=0.9317787$
PBSW	$=0.8$
PBSWG	$=0.8$
PVTHO	$=0.0520855$
WKETA	$=-0.0237483$

LEVEL	$=49$
TOX	$=1.42 \mathrm{E}-8$
VTH0	$=0.629035$
K3	$=24.0984767$
NLX	$=1 \mathrm{E}-9$
DVT2W	$=0$
DVT2	$=-0.1403765$
UB	$=1.702517 \mathrm{E}-18$
A0	$=0.6580918$
B1	$=5 \mathrm{E}-6$
A2	$=0.3363058$
PRWB	$=0.0104806$
LINT	$=6.999776 \mathrm{E}-8$
DWG	$=-1.256454 \mathrm{E}-8$
NFACTOR	$=1.0354201$
CDSCD	$=0$
ETAB	$=-1.5324 \mathrm{E}-4$
PDIBLC1	$=0.8187825$
DROUT	$=0.9919348$
PVAG	$=0$
KT1	$=-0.11$
UA1	$=4.31 \mathrm{E}-9$
AT	$=3.3 \mathrm{E} 4$
WW	$=0$
LL	$=0$
LWN	$=1$
XPART	$=0.5$
CGBO	$=1 \mathrm{E}-9$
MJ	$=0.4495867$
MJSW	$=0.1713852$
MJSWG	$=0.1713852$
PRDSW	$=112.8875816$
LKETA	$=1.728324 \mathrm{E}-3$

Model Errors with Different W/L Values

Binning models can improve model accuracy

BSIM Binning Model
 - Bin on device sizes

- multiple BSIM models !

Model Changes with Process Variations

(n -ch characteristics shown)

Corner models can improve model accuracy

BSIM Corner Models with Binning

- Often 4 corners in addition to nominal TT, FF, FS, SF, and SS
- bin on device sizes

. MODEL CM	MOSN NMOS (LEVEL	$=49$
+VERSION	$=3.1$	TNOM	$=27$	TOX	$=1.42 \mathrm{E}-8$
+XJ	$=1.5 \mathrm{E}-7$	NCH	$=1.7 \mathrm{E} 17$	VTHO	$=0.629035$
+K1	$=0.8976376$	K2	$=-0.09255$	K3	$=24.0984767$
+K3B	$=-8.2369696$	W0	$=1.041146 \mathrm{E}-8$	NLX	$=1 \mathrm{E}-9$
+DVTOW	$=0$	DVT1W	$=0$	DVT2W	$=0$
+DVT0	$=2.7123969$	DVT1	$=0.4232931$	DVT2	$=-0.1403765$
+U0	$=451.2322004$	UA	$=3.091785 \mathrm{E}-13$	UB	$=1.702517 \mathrm{E}-18$
+UC	$=1.22401 \mathrm{E}-11$	VSAT	$=1.715884 \mathrm{E} 5$	A0	$=0.6580918$
+AGS	$=0.130484$	B0	$=2.446405 \mathrm{E}-6$	B1	$=5 \mathrm{E}-6$
+KETA	$=-3.043349 \mathrm{E}-3$	A1	$=8.18159 \mathrm{E}-7$	A2	$=0.3363058$
+RDSW	$=1.367055 \mathrm{E} 3$	PRWG	$=0.0328586$	PRWB	$=0.0104806$
+WR	$=1$	WINT	$=2.443677 \mathrm{E}-7$	LINT	$=6.999776 \mathrm{E}-8$
+XL	$=1 \mathrm{E}-7$	XW	$=0$	DWG	$=-1.256454 \mathrm{E}-8$
+DWB	$=3.676235 \mathrm{E}-8$	VOFF	$=-1.493503 \mathrm{E}-4$	NFACTOR	$=1.0354201$
+CIT	$=0$	CDSC	$=2.4 \mathrm{E}-4$	CDSCD	$=0$
+CDSCB	$=0$	ETAO	$=2.342963 \mathrm{E}-3$	ETAB	$=-1.5324 \mathrm{E}-4$
+DSUB	$=0.0764123$	PCLM	$=2.5941582$	PDIBLC1	$=0.8187825$
+PDIBLC2	$=2.366707 \mathrm{E}-3$	PDIBLCB	$=-0.0431505$	DROUT	$=0.9919348$
+PSCBE1	$=6.611774 \mathrm{E} 8$	PSCBE2	$=3.238266 \mathrm{E}-4$	PVAG	$=0$
+DEITA	$=0.01$	RSH	$=83.5$	MORMOD	$=1$
+PRT	$=0$	UTE	$=-1.5$	KT1	$=-0.11$
+KT1L	$=0$	KT2	$=0.022$	UA1	$=4.31 \mathrm{E}-9$
+UB1	$=-7.61 \mathrm{E}-18$	UC1	$=-5.6 \mathrm{E}-11$	AT	$=3.3 \mathrm{E} 4$
+WL	$=0$	WLN	$=1$	WW	$=0$
+WWN	$=1$	WWL	$=0$	LL	$=0$
+LLN	$=1$	LW	$=0$	LWN	$=1$
+LWL	$=0$	CAPMOD	$=2$	XPART	$=0.5$
+CGDO	$=2.32 \mathrm{E}-10$	CGSO	$=2.32 \mathrm{E}-10$	CGBO	$=1 \mathrm{E}-9$
+CJ	$=4.282017 \mathrm{E}-4$	PB	$=0.9317787$	MJ	$=0.4495867$
+CJSW	$=3.034055 \mathrm{E}-10$	PBSW	$=0.8$	MJSW	$=0.1713852$
+CJSWG	$=1.64 \mathrm{E}-10$	PBSWG	$=0.8$	MJSWG	$=0.1713852$
+CF	$=0$	PVTH0	$=0.0520855$	PRDSW	$=112.8875816$
+PK2	$=-0.0289036$	WKETA	$=-0.0237483$	LKETA	$=1.728324 \mathrm{E}-3$

With 32 size bins and 4 corners, this model has 15,200 model parameters !

How many models of the MOSFET do we have?

Switch-level model (2)

Square-law model

Square-law model (with λ and bulk additions)
α-law model (with λ and bulk additions)

BSIM model

BSIM model (with binning extensions)

BSIM model (with binning extensions and process corners)

The Modeling Challenge

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{D}}=\mathrm{f}_{1}\left(\mathrm{~V}_{\mathrm{GS}}, \mathrm{~V}_{\mathrm{DS}}\right) \\
& \mathrm{I}_{\mathrm{G}}=\mathrm{f}_{2}\left(\mathrm{~V}_{\mathrm{GS}}, \mathrm{~V}_{\mathrm{DS}}\right) \\
& \mathrm{I}_{\mathrm{B}}=\mathrm{f}_{3}\left(\mathrm{~V}_{\mathrm{GS}}, \mathrm{~V}_{\mathrm{DS}}\right)
\end{aligned}
$$

Difficult to obtain analytical functions that accurately fit actual devices over bias, size, and process variations

Model Status

In the next few slides, the models we have developed will be listed and reviewed

- Square-law Model
- Switch-level Models
- Extended Square-law model
- Short-channel model
- BSIM Model
- BSIM Binning Model
- Corner Models

Square-Law Model

Model Parameters : $\left\{\mu, \mathrm{C}_{\text {OX }}, \mathrm{V}_{\text {TH0 }}\right\}$
Design Parameters : $\{\mathrm{W}, \mathrm{L}\}$ but only one degree of freedom W/L

Switch-Level Models

C_{GS} and R_{SW} dependent upon device sizes and process
For minimum-sized devices in a $0.5 u$ process

$$
\left.\mathrm{C}_{\mathrm{GS}} \cong 1.5 \mathrm{fF} \quad \mathrm{R}_{\mathrm{sw}} \cong \begin{array}{c}
2 \mathrm{~K} \Omega \mathrm{n}-\text { channel } \\
6 \mathrm{~K} \Omega \mathrm{p}-\text { channel }
\end{array}\right\}
$$

Considerable emphasis will be placed upon device sizing to manage C_{GS} and R_{SW} Model Parameters : $\left\{\mathrm{C}_{\mathrm{GS}}, \mathrm{R}_{\mathrm{SW}}\right\}$

Extended Square-Law Model

$$
\begin{aligned}
& I_{G}=0 \\
& I_{B}=0
\end{aligned}
$$

$$
0 \quad \mathrm{~V}_{\mathrm{GS}} \leq \mathrm{V}_{\mathrm{TH}}
$$

$$
\mathrm{I}_{\mathrm{D}}= \begin{cases}\mu \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{~W}}{\mathrm{~L}}\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TH}}-\frac{\mathrm{V}_{\mathrm{DS}}}{2}\right) \mathrm{V}_{\mathrm{DS}} & \mathrm{~V}_{\mathrm{GS}} \geq \mathrm{V}_{T H} \mathrm{~V}_{\mathrm{DS}}<\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{T H} \\ \mu \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{~W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TH}}\right)^{2} \bullet\left(1+\lambda \mathrm{V}_{\mathrm{DS}}\right) & \mathrm{V}_{\mathrm{GS}} \geq \mathrm{V}_{\mathrm{TH}} \mathrm{~V}_{\mathrm{DS}} \geq \mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TH}}\end{cases}
$$

$$
\mathrm{V}_{\mathrm{TH}}=\mathrm{V}_{\mathrm{TH} 0}+\gamma\left(\sqrt{\varphi-\mathrm{V}_{\mathrm{BS}}}-\sqrt{\varphi}\right)
$$

Model Parameters : $\left\{\mu, \mathrm{C}_{\mathrm{OX}}, \mathrm{V}_{\mathrm{TH} 0}, \varphi, \gamma, \lambda\right\}$
Design Parameters : $\{W, L\}$ but only one degree of freedom W/L

Short-Channel Model

$$
\begin{aligned}
& \mathrm{I}_{0}=\left\{\begin{array}{l}
0 \\
\frac{\theta_{2}}{\theta_{1}} \mu \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{~W}}{\mathrm{~L}}\left(\mathrm{~V}_{\mathrm{os}}-\mathrm{V}_{\text {TH }}\right)^{\frac{\alpha}{2}} \mathrm{~V}_{\mathrm{os}}
\end{array}\right. \\
& \mathrm{V}_{\mathrm{GS}} \leq \mathrm{V}_{\mathrm{TH}} \\
& \mathrm{~V}_{\mathrm{os}} \geq \mathrm{V}_{T H} \mathrm{~V}_{\mathrm{os}}<\theta_{\mathrm{i}}\left(\mathrm{~V}_{\mathrm{os}}-V_{r t}\right)^{\frac{\alpha}{2}} \\
& \theta_{2} \mu \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{~W}}{\mathrm{~L}}\left(\mathrm{~V}_{\text {os }}-\mathrm{V}_{\text {TH }}\right)^{\alpha} \quad \mathrm{V}_{\text {os }} \geq \mathrm{V}_{\text {TH }} \mathrm{V}_{\text {os }} \geq \theta_{1}\left(\mathrm{~V}_{\text {os }}-V_{T H}\right)^{\frac{\alpha}{2}}
\end{aligned}
$$

α is the velocity saturation index, $2 \geq \alpha \geq 1$

Channel length modulation (λ) and bulk effects can be added to the velocity Saturation as well

BSIM model

.MODEL CM +VERSION	MOSN NMOS ($=3.1$
+XJ	$=1.5 \mathrm{E}-7$
+K1	$=0.8976376$
+K3B	$=-8.2369696$
+DVTOW	$=0$
+DVT0	$=2.7123969$
+U0	$=451.2322004$
+UC	$=1.22401 \mathrm{E}-11$
+AGS	$=0.130484$
+KETA	$=-3.043349 \mathrm{E}-3$
+RDSW	$=1.367055 \mathrm{E} 3$
+WR	$=1$
+XL	$=1 \mathrm{E}-7$
+DWB	$=3.676235 \mathrm{E}-8$
+CIT	$=0$
+CDSCB	$=0$
+DSUB	$=0.0764123$
+PDIBLC2	$=2.366707 \mathrm{E}-3$
+PSCBE1	$=6.611774 \mathrm{E} 8$
+PRT	$=0$
+KT1L	$=0$
+UB1	$=-7.61 \mathrm{E}-18$
+WL	$=0$
+WWN	$=1$
+LLN	$=1$
+LWL	$=0$
+CGDO	$=2.32 \mathrm{E}-10$
+CJ	$=4.282017 \mathrm{E}-4$
+CJSW	$=3.034055 \mathrm{E}-10$
+CJSWG	$=1.64 \mathrm{E}-10$
+CF	$=0$
+PK2	$=-0.0289036$
*	

		LEVEL	$=49$
TNOM	$=27$	TOX	$=1.42 \mathrm{E}-8$
NCH	$=1.7 \mathrm{E17}$	VTHO	$=0.629035$
K2	$=-0.09255$	K3	$=24.0984767$
wo	$=1.041146 \mathrm{E}-8$	NLX	$=1 \mathrm{E}-9$
DVT1W	$=0$	DVT2W	$=0$
DVT1	$=0.4232931$	DVT2	$=-0.1403765$
UA	$=3.091785 \mathrm{E}-13$	UB	$=1.702517 \mathrm{E}-18$
VSAT	$=1.715884 \mathrm{E} 5$	A0	$=0.6580918$
B0	$=2.446405 \mathrm{E}-6$	B1	$=5 \mathrm{E}-6$
A1	$=8.18159 \mathrm{E}-7$	A2	$=0.3363058$
PRWG	$=0.0328586$	PRWB	$=0.0104806$
WINT	$=2.443677 \mathrm{E}-7$	LINT	$=6.999776 \mathrm{E}-8$
XW	$=0$	DWG	$=-1.256454 \mathrm{E}-8$
VOFF	$=-1.493503 \mathrm{E}-4$	NFACTOR	$=1.0354201$
CDSC	$=2.4 \mathrm{E}-4$	CDSCD	$=0$
ETA0	$=2.342963 \mathrm{E}-3$	ETAB	$=-1.5324 \mathrm{E}-4$
PCLM	$=2.5941582$	PDIBLC1	$=0.8187825$
PDIBLCB	$=-0.0431505$	DROUT	$=0.9919348$
PSCBE2	$=3.238266 \mathrm{E}-4$	PVAG	$=0$
UTE	$=-1.5$	KT1	$=-0.11$
KT2	$=0.022$	UA1	$=4.31 \mathrm{E}-9$
UC1	$=-5.6 \mathrm{E}-11$	AT	$=3.3 \mathrm{E} 4$
WLN	$=1$	WW	$=0$
WWL	$=0$	LL	$=0$
LW	$=0$	LWN	$=1$
CAPMOD	$=2$	XPART	$=0.5$
CGSO	$=2.32 \mathrm{E}-10$	CGBO	$=1 \mathrm{E}-9$
PB	$=0.9317787$	MJ	$=0.4495867$
PBSW	$=0.8$	MJSW	$=0.1713852$
PBSWG	$=0.8$	MJSWG	$=0.1713852$
PVTH0	$=0.0520855$	PRDSW	$=112.8875816$
WKETA	$=-0.0237483$	LKETA	$=1.728324 \mathrm{E}-3$

Note this model has 95 model parameters !

BSIM Binning Model
 - Bin on device sizes

- multiple BSIM models !

BSIM Corner Models

- Often 4 corners in addition to nominal TT, FF, FS, SF, and SS
- five different BSIM models !

Hierarchical Model Comparisons

Corner Models

Applicable at any level in model hierarchy (same model, different parameters)
Often 4 corners (FF, FS, SF, SS) used but sometimes many more
Designers must provide enough robustness so good yield at all corners

Stay Safe and Stay Healthy !

End of Lecture 17

